Anytime Depth-First Search with Problem Decomposition for Optimization in Graphical Models
نویسندگان
چکیده
One popular and efficient scheme for solving exactly MPE/MAP and related problems over graphical models is depth-first Branch and Bound. However, when the algorithm exploits problem decomposition using AND/OR search spaces, its anytime behavior breaks down. This paper 1) analyzes and demonstrates this inherent conflict between effective exploitation of problem decomposition (through AND/OR search spaces) and the anytime behavior of depth-first search (DFS), 2) presents a first scheme to address this issue while maintaining desirable DFS memory properties, 3) analyzes and demonstrates its effectiveness. Our work is applicable to any problem that can be cast as search over an AND/OR search space.
منابع مشابه
Anytime AND/OR Depth-First Search for Combinatorial Optimization
One popular and efficient scheme for solving combinatorial optimization problems over graphical models exactly is depth-first Branch and Bound. However, when the algorithm exploits problem decomposition using AND/OR search spaces, its anytime behavior breaks down. This article 1) analyzes and demonstrates this inherent conflict between effective exploitation of problem decomposition (through AN...
متن کاملAnytime AND/OR Depth-First Search for Combinatorial Optimization - (Extended Abstract)
One popular and efficient scheme for solving combinatorial optimization problems over graphical models exactly is depth-first Branch and Bound. However, when the algorithm exploits problem decomposition using AND/OR search spaces, its anytime behavior breaks down. This article 1) analyzes and demonstrates this inherent conflict between effective exploitation of problem decomposition (through AN...
متن کاملAnytime AND/OR Best-First Search for Optimization in Graphical Models
Depth-first search schemes are known to be more cost-effective for solving graphical models tasks than Best-First Search schemes. In this paper we show however that anytime Best-First algorithms recently developed for path-finding problems, can fare well when applied to graphical models. Specifically, we augment best-first schemes designed for graphical models with such anytime capabilities and...
متن کاملWeighted Best-First Search for W-Optimal Solutions over Graphical Models
The paper explores the potential of weighted best-first search schemes as anytime optimization algorithms for solving graphical models tasks such as MPE (Most Probable Explanation) or MAP (Maximum a Posteriori) and WCSP (Weighted Constraint Satisfaction Problem). While such schemes were widely investigated for path-finding tasks, their application for graphical models was largely ignored, possi...
متن کاملWeighted anytime search: new schemes for optimization over graphical models
Weighted search (best-first or depth-first) refers to search with a heuristic function multiplied by a constant w [Pohl (1970)]. The paper shows for the first time that for graphical models optimization queries weighted best-first and weighted depth-first Branch and Bound search schemes are competitive energy-minimization anytime optimization algorithms. Weighted best-first schemes were investi...
متن کامل